ak_logo

Arbeitskreis
Theoretische Chemie

Fakultät
Chemie & Pharmazie

uni-logo

Universität
Regensburg

 
Universität Regensburg > Fakultäten > Fakultät Chemie & Pharmazie > Institut für Physikalische und Theoretische Chemie > Arbeitskreis Theoretische Chemie
en English Version

Home

» Willkommen » Kontakt » Disclaimer

Mitarbeiter

» Prof. Dr. Martin Schütz » PD Dr. Denis Usvyat » Klaus Ziereis » Matthias Hinreiner » David David » Martin-J.-A. Christlmaier » Alexander Krach » Alumni

Lehre

» Sommersemester 2016 » Wintersemester 2015/2016

» Übungsblätter » Sonstige Unterlagen

Forschung

» Forschungsschwerpunkte » Suche nach Publikationen

Seminare

» Wintersemester 2011/2012 » Sommersemester 2011

Intern

» Einloggen » Groupboard

Suche nach Publikationen

Bitte Suchparameter wählen. Um Ihre Suche nicht einzuschränken, lassen Sie bitte die jeweiligen Felder leer.

Autor Stichwort Journal Jahr

Ergebnisse Ihrer Suche:

  1. M. Schütz, L. Maschio, A. J. Karttunen, D. Usvyat, Exfoliation Energy of Black Phosphorus Revisited: A Coupled Cluster Benchmark, J. Phys. Chem. Lett., 8, 1290 (2017).
  2. O. Masur, M. Schütz, L. Maschio, D. Usvyat, Fragment-based direct-local-ring-coupled-cluster doubles treatment embedded in the periodic Hartree-Fock solution, J. Chem. Theory Comput., 12, 5145 (2016).
  3. G. Wälz, D. Usvyat, T. Korona, and M. Schütz, A hierarchy of local Coupled Cluster Singles and Doubles response methods for Ionization Potentials, J. Chem. Phys., 144, 084117 (2016).
  4. G. Sansone, L. Maschio, D. Usvyat, M. Schütz, A. J. Karttunen, Towards an Accurate Estimate of the Exfoliation Energy of Black Phosphorus: a Periodic Quantum Chemical Approach, J. Phys. Chem. Lett., 7, 131 (2016).
  5. D. Usvyat, High precision quantum-chemical treatment of adsorption: Benchmarking physisorption of molecular hydrogen on graphane, J. Chem. Phys., 143, 104704 (2015).
  6. M. Schwilk, D. Usvyat and H.-J. Werner, Communication: Improved pair approximations in local coupled-cluster methods, J. Chem. Phys., 142, 121102 (2015).
  7. G. Sansone, B. Civalleri, D. Usvyat, J. Toulouse, K. Sharkas and L. Maschio, Range-separated double-hybrid density-functional theory applied to periodic systems, J. Chem. Phys., 143, 102811 (2015).
  8. D. Usvyat, L. Maschio, M. Schütz , Periodic local MP2 method employing orbital specific virtuals , J. Chem. Phys., 143, 102805 (2015).
  9. J. Yang, W. Hu, D. Usvyat, D. Matthews, M. Schütz, G. K.-L. Chan, Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy, Science, 345, 640 (2014).
  10. R. Martinez-Casado, D. Usvyat, G. Mallia, L. Maschio, S. Casassa, J. Ellis, M. Schütz and N. M. Harrison , Diffraction of helium on MgO(100) surface calculated from first-principles, Phys. Chem. Chem. Phys., 16, 21106 (2014).
  11. M. Schütz, O. Masur and D. Usvyat, Efficient and accurate treatment of weak pairs in local CCSD(T) calculations. II. Beyond the ring approximation, J. Chem. Phys., 140, 244107 (2014).
  12. D. Usvyat, Local post-Hartree-Fock methods for periodic systems, University of Regensburg, Habilitationsschrift, (2014).
  13. R. Martinez-Casado, D. Usvyat, L. Maschio, G. Mallia, S. Casassa, J. Ellis, M. Schütz, and N. M. Harrison, Approaching an exact treatment of electronic correlations at solid surfaces: The binding energy of the lowest bound state of helium adsorbed on MgO(100), Phys. Rev. B, 89, 205138 (2014).
  14. D. Usvyat, Linear-scaling explicitly correlated treatment of solids: Periodic local MP2-F12 method., J. Chem. Phys., 139, 194101 (2013).
  15. C. Müller, D. Usvyat , Incrementally-corrected periodic local-MP2 calculations: I. The cohesive energy of molecular crystals, J. Chem. Theory Comput., 9, 5590 (2013).
  16. O. Masur, D. Usvyat and M. Schütz, Efficient and accurate treatment of weak pairs in local CCSD(T) calculations, J. Chem. Phys., 139, 164116 (2013).
  17. M. Hinreiner, D. A. Ryndyk, D. Usvyat, T. Merz, M. Schütz, K. Richter, Influencing the conductance in biphenyl-like molecular junctions with THz radiation, Phys. Stat. Sol. (b), 250, 2408 (2013).
  18. M. Lorenz, L. Maschio, M. Schütz, and D. Usvyat, Local ab initio methods for calculating optical band gaps in periodic systems: II. Periodic density fitted local configuration interaction singles method for solids, J. Chem. Phys., 137, 204119 (2012).
  19. G. Wälz, D. Kats, D. Usvyat, T. Korona and M. Schütz, Hermitian time-dependent coupled-cluster linear response ansätze of second-order in application to excitation energies and frequency-dependent dipole polarizabilities, Phys. Rev. A, 86, 052519 (2012).
  20. D. Usvyat, C. Yin, G. Wälz, C. Mühle, M. Schütz and M. Jansen, Phase transition in GeF2 driven by change of type of intermolecular interaction, Phys. Rev. B, 86, 054102 (2012).
  21. D. Usvyat, K. Sadeghian, L. Maschio and M. Schütz, Geometrical frustration of an argon monolayer adsorbed on the MgO (100) surface: An accurate periodic ab initio study, Phys. Rev. B, 86, 045412 (2012).
  22. C. Pisani, M. Schütz, S. Casassa, D. Usvyat, L. Maschio, M. Lorenz, and A. Erba, Cryscor: a program for the post-Hartree-Fock treatment of periodic systems, Phys. Chem. Chem. Phys., 14, 7615 (2012).
  23. R. Martinez-Casado, G. Mallia, D. Usvyat, L. Maschio, S. Casassa, M. Schütz and N. M. Harrison , He-atom scattering from MgO(100): calculating diffraction peak intensities with a semi ab initio potential, Phys. Chem. Chem. Phys., 13, 14750 (2011).
  24. C. Müller, D. Usvyat, H. Stoll, Local correlation methods for solids: Comparison of incremental and periodic correlation calculations for the argon fcc crystal, Phys. Rev. B, 83, 245136 (2011).
  25. D. Kats, D. Usvyat and M. Schütz, Second-order variational coupled-cluster linear-response method: A Hermitian time-dependent theory, Phys. Rev. A, 83, 062503 (2011).
  26. D. Usvyat, B. Civalleri, L. Maschio, R. Dovesi, C. Pisani, and M. Schütz, Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH, J. Chem. Phys., 134, 214105 (2011).
  27. E. Voloshina, D. Usvyat, M. Schütz, Y. Dedkov, B. Paulus, On the physisorption of water on graphene: a CCSD(T) study, Phys. Chem. Chem. Phys., 13, 12041 (2011).
  28. M. Lorenz, D. Usvyat, M. Schütz, Local ab initio methods for calculating optical band gaps in periodic systems: I. Periodic density fitted local Configuration Interaction Singles method for polymers, J. Chem. Phys., 134, 094101 (2011).
  29. M. Halo, S. Casassa, L. Maschio, C. Pisani, R. Dovesi, D. Ehinon, I. Baraille, M. Rérat and D. Usvyat, Periodic ab initio estimates of the dispersive interaction between molecular nitrogen and a monolayer of hexagonal BN, Phys. Chem. Chem. Phys., 13, 4434 (2011).
  30. M. Halo, C. Pisani, L. Maschio, S. Casassa, M. Schütz, D. Usvyat, Electron correlation decides the stability of cubic versus hexagonal boron nitride, Phys. Rev. B, 83, 035117 (2011).
  31. R. Martinez-Casado, G. Mallia, D. Usvyat, L. Maschio, S. Casassa, M. Schütz and N. Harrison, Periodic Quantum Mechanical Simulation of the He-MgO(100) Interaction Potential, J. Chem. Phys., 134, 014706 (2011).
  32. M. Schütz, D. Usvyat, M. Lorenz, C. Pisani, L. Maschio, S. Casassa, M. Halo, Density fitting for correlated calculations in periodic systems, Accurate Condensed-Phase Quantum Chemistry, Series: Computation in Chemistry, 27 (2010).
  33. L. Maschio, D. Usvyat and B. Civalleri, Ab initio study of van der Waals and hydrogen-bonded molecular crystals with a periodic local-MP2 method, CrystEngComm, 12, 2429 (2010).
  34. D. Usvyat, L. Maschio, C. Pisani, and M. Schütz, Second Order Local Møller-Plesset Perturbation Theory for Periodic Systems: the CRYSCOR Code, Z. Phys. Chem. - special issue SPP1145, 224, 441 (2010).
    PDF  Directly download pdf-version
  35. A. Erba, C. Pisani, S. Casassa, L. Maschio, M. Schütz, and D. Usvyat, MP2 versus density-functional theory study of the Compton profiles of crystalline urea, Phys. Rev. B, 81, 165108 (2010).
  36. L. Maschio, D, Usvyat, M. Schütz, and B. Civalleri, Periodic local Møller–Plesset second order perturbation theory method applied to molecular crystals: Study of solid NH3 and CO2 using extended basis sets, J. Chem. Phys., 132, 134706 (2010).
  37. D. Kats, D. Usvyat, S. Loibl, T. Merz, M. Schütz, Comment on "Minimax approximation for the decomposition of energy denominators in Laplace-transformed Møller-Plesset perturbation theories", J. Chem. Phys., 130, 127101 (2009).
  38. L. Maschio and D. Usvyat, Fitting of local densities in periodic systems, Phys. Rev. B, 78, 073102 (2008).
  39. D. Kats, D. Usvyat and M. Schütz, On the use of the Laplace transform in local correlation methods, Phys. Chem. Chem. Phys., 10, 3430 (2008).
  40. C. Pisani, L. Maschio, S. Casassa, M. Halo, M. Schütz and D. Usvyat, Periodic Local MP2 Method for the Study of Electronic Correlation in Crystals: Theory and Preliminary Applications, J. Comput. Chem., 29, 2113 (2008).
  41. D. Usvyat and M. Schütz, Orbital-unrelaxed Lagrangian density matrices for periodic systems at the local MP2 level, J. Phys.: Conf. Ser., Honorary issue Pisani, 117, 012027 (2008).
  42. D. Usvyat, L. Maschio, F.R. Manby, S. Casassa, M. Schütz and C. Pisani, Fast local-MP2 method with Density-Fitting for crystals. B. Test calculations and application to the carbon dioxide crystal, Phys. Rev. B, 76, 075102 (2007).
  43. L. Maschio, D. Usvyat, F.R. Manby, S. Casassa, C. Pisani and M. Schütz, Fast local-MP2 method with Density-Fitting for crystals. A. Theory, Phys. Rev. B, 76, 075101 (2007).
  44. A. V. Baryshev, V. A. Kosobukin, K. B. Samusev, D. E. Usvyat, and M. F. Limonov, Light diffraction from opal-based photonic crystals with growth-induced disorder: Experiment and theory, Phys. Rev. B, 73, 205118 (2006).
  45. D. Usvyat and M. Schütz, Nonorthogonal ultralocalized functions and fitted Wannier functions for local electron correlation methods for solids, Theor. Chem. Acc., 114, 276 (2005).
  46. R.A. Evarestov, V.P. Smirnov, D.E. Usvyat, Wannier-type atomic orbitals for periodic systems, Theor. Chem. Acc., 114, 19 (2005).
  47. R.A. Evarestov, V.P. Smirnov, I.I. Tupitsyn, D.E. Usvyat, Local characteristics of the electronic structure of MgO: LCAO and plane-wave calculations, Int. J. Quantum Chem., 104, 110 (2005).
  48. R.A. Evarestov, V.P. Smirnov, D.E. Usvyat, Wannier functions and chemical bonding in a slab model: MgO (001) and TiO2 (110) surfaces, Int. J. Quantum Chem., 104, 102 (2005).
  49. A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, K. B. Samusev, and D. E. Usvyat, Photonic bandgap structure: From spectroscopy towards visualization, Phys. Rev. B, 70, 113104 (2004).
  50. R. A. Evarestov, V. P. Smirnov, I.I. Tupitsyn and D. E. Usvyat, Use of Wannier-type atomic orbitals in LCAO and plane wave calculations: Chemical bonding in MgO crystal, Phys. Stat. Sol. (b), 241, R35 (2004).
  51. D. E. Usvyat, R. A. Evarestov and V. P. Smirnov, Wannier Functions and Chemical Bonding in Crystals with the Perovskite-like Structure: SrTiO3, BaTiO3, PbTiO3, and LaMnO3, Int. J. Quantum Chem., 100, 352 (2004).
  52. R. A. Evarestov, D. E. Usvyat and V. P. Smirnov, Full Inclusion of Symmetry in Constructing Wannier Functions: Chemical Bonding in MgO and TiO2 Crystals, Phys. Solid State, 45, 2072 (2003).
  53. A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, K. B. Samusev, and D. E. Usvyat, Three-dimensional Bragg diffraction in growth-disordered opals, Proc. SPIE Int. Soc. Opt. Eng., 5023, 109 (2003).
  54. R. A. Evarestov, V. P. Smirnov and D. E. Usvyat, Chemical bonding in crystalline silver halides: Wannier-type atomic functions approach, Int. J. Quantum Chem., 96, 95 (2003).
  55. R. A. Evarestov, V. P. Smirnov and D. E. Usvyat, Local properties of the electronic structure of cubic SrTiO3, BaTiO3 and PbTiO3 crystals, analysed using Wannier-type atomic functions, Solid State Commun., 127, 423 (2003).
  56. A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, K. B. Samusev, and D. E. Usvyat, Bragg Diffraction of Light in Synthetic Opals, Phys. Solid State, 45, 459 (2003).
  57. A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, K. B. Samusev, and D. E. Usvyat, Bragg diffraction of light in high-quality synthetic opals, Physica E, 17, 426 (2003).
  58. A. V. Baryshev, A. V. Ankudinov, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, K.B. Samusev, and D.E. Usvyat, Optical Characterization of Synthetic Opals, Phys. Solid State, 44, 1648 (2002).
  59. V. P. Smirnov, R. A. Evarestov, and D. E. Usvyat, Wannier-Type Atomic Functions and Chemical Bonding in Crystals, Int. J. Quantum Chem., 88, 642 (2002).
  60. V. Zelezny, J. Petzelt, E. Cockayne, M. F. Limonov, D. E. Usvyat, V. V. Lemanov, and A.A. Volkov, Temperature dependence of infrared-active phonons in CaTiO3: A combined spectroscopic and first-principles study, Phys. Rev. B, 66, 224303 (2002).
  61. V. Zelezny, M. F. Limonov, D. Usvyat, V. V. Lemanov, J. Petzelt, and A. A. Volkov, Soft-mode behavior of incipient ferroelectric perovskite CaTiO3, Ferroelectrics, 272, 113 (2002).
  62. V. P. Smirnov and D. E. Usvyat, Variational method for the generation of localized Wannier functions on the basis of Bloch functions, Phys. Rev. B, 64, 245108 (2001).
  63. R. Eglitis, W. Jia, S. Kapphan, H. Liu, D. Usvyat, and V. S. Vikhnin, Critical effects in optical response due to charge transfer vibronic exitons and their structure in perovskite-like systems, J. Luminescence, 83, 109 (1999).
  64. V. P. Smirnov and D. E. Usvyat, Change of the Wannier-function symmetry point by choice of Bloch-function phase factors, Phys. Rev. B, 59, 9695 (1999).
 
Zuletzt aktualisiert: Wednesday, 17. May 2017 [10:52:58].